# Clustering Group features based on spatial proximity using clustering algorithms. ## Overview Clustering groups nearby features into clusters, identifying spatial patterns and groupings in point data. ## Inputs - **Dataset**: Point dataset - **Method**: Clustering algorithm - **Parameters**: Algorithm-specific parameters ## Outputs New dataset containing: - Original features - **Cluster ID**: Assigned cluster identifier - **Cluster Size**: Number of features in cluster - Original attributes ## Algorithms ### K-Means Clustering Groups points into k clusters by minimizing within-cluster variance. ### DBSCAN Density-based clustering that identifies clusters of varying shapes. ### Hierarchical Clustering Builds cluster hierarchy using distance measures. ## Example ```json { "dataset_id": 123, "method": "kmeans", "k": 5 } ``` ## Background Jobs This analysis runs as a background job. ## Use Cases - Market segmentation - Service area identification - Pattern recognition - Data exploration ## Notes - Algorithm selection depends on data characteristics - Parameter tuning affects results - Results may vary with different random seeds - Consider spatial scale when interpreting clusters ## Related Documentation - [Analysis API](../api/analysis.md)