# Hot Spot Analysis Identify statistically significant clusters of high and low values using Getis-Ord Gi* statistics. ## Overview Hot spot analysis uses the Getis-Ord Gi* statistic to identify statistically significant spatial clusters. Features are classified as: - **99% Hot Spot**: Very high values, 99% confidence - **95% Hot Spot**: High values, 95% confidence - **90% Hot Spot**: High values, 90% confidence - **Not Significant**: No significant clustering - **90% Cold Spot**: Low values, 90% confidence - **95% Cold Spot**: Low values, 95% confidence - **99% Cold Spot**: Very low values, 99% confidence ## Inputs - **Dataset**: Point or polygon dataset - **Value Field**: Numeric field to analyze - **Neighbor Type**: Distance-based or K-nearest neighbors - **Distance** (if distance-based): Maximum neighbor distance - **K Neighbors** (if KNN): Number of nearest neighbors ## Outputs New dataset containing: - Original geometry - **Gi* Z-Score**: Standardized z-score - **P-Value**: Statistical significance - **Hot Spot Class**: Categorized class - Original attributes ## Algorithm 1. Calculate spatial weights matrix based on neighbor configuration 2. Compute Getis-Ord Gi* statistic for each feature 3. Calculate z-scores and p-values 4. Categorize into hot spot classes 5. Store results in output dataset ## Example ```json { "dataset_id": 123, "value_field": "population", "neighbor_type": "distance", "distance": 1000 } ``` ## Background Jobs This analysis runs as a background job. See [Hot Spot Analysis Worker](../workers/hotspot_analysis.md) for details. ## Use Cases - Crime analysis - Disease clustering - Economic activity patterns - Environmental monitoring - Social phenomena analysis ## Notes - Requires numeric field with sufficient variation - Distance should be appropriate for data scale - KNN method is generally faster for large datasets - Results depend on neighbor configuration ## Related Documentation - [Hot Spot Analysis Worker](../workers/hotspot_analysis.md) - [Analysis API](../api/analysis.md) - [Live Hot Spot Analysis](hotspot-live.md)