# Kernel Density Estimation (KDE) Generate density surfaces from point data using kernel density estimation. ## Overview KDE creates a continuous density surface from point data, showing where points are concentrated. Higher values indicate greater point density. ## Inputs - **Dataset**: Point dataset - **Bandwidth**: Smoothing parameter (default: auto-calculated) - **Cell Size**: Output raster cell size (default: auto-calculated) - **Weight Field** (optional): Field to weight points ## Outputs Raster dataset containing: - Density values for each cell - Higher values indicate greater point density - Proper spatial reference ## Algorithm 1. Calculate optimal bandwidth (if not specified) 2. Create output raster grid 3. For each cell, calculate kernel-weighted sum of nearby points 4. Store density values in raster ## Example ```json { "dataset_id": 123, "bandwidth": 1000, "cell_size": 100 } ``` ## Background Jobs This analysis runs as a background job. ## Use Cases - Population density mapping - Crime hotspot visualization - Species distribution modeling - Event density analysis ## Notes - Bandwidth controls smoothing (larger = smoother) - Cell size controls output resolution - Weight field allows importance weighting - Results are sensitive to bandwidth selection ## Related Documentation - [Analysis API](../api/analysis.md) - [Raster Tools](raster.md)