AR1/docs/analysis-tools/kde.md

64 lines
1.4 KiB
Markdown

# Kernel Density Estimation (KDE)
Generate density surfaces from point data using kernel density estimation.
## Overview
KDE creates a continuous density surface from point data, showing where points are concentrated. Higher values indicate greater point density.
## Inputs
- **Dataset**: Point dataset
- **Bandwidth**: Smoothing parameter (default: auto-calculated)
- **Cell Size**: Output raster cell size (default: auto-calculated)
- **Weight Field** (optional): Field to weight points
## Outputs
Raster dataset containing:
- Density values for each cell
- Higher values indicate greater point density
- Proper spatial reference
## Algorithm
1. Calculate optimal bandwidth (if not specified)
2. Create output raster grid
3. For each cell, calculate kernel-weighted sum of nearby points
4. Store density values in raster
## Example
```json
{
"dataset_id": 123,
"bandwidth": 1000,
"cell_size": 100
}
```
## Background Jobs
This analysis runs as a background job.
## Use Cases
- Population density mapping
- Crime hotspot visualization
- Species distribution modeling
- Event density analysis
## Notes
- Bandwidth controls smoothing (larger = smoother)
- Cell size controls output resolution
- Weight field allows importance weighting
- Results are sensitive to bandwidth selection
## Related Documentation
- [Analysis API](../api/analysis.md)
- [Raster Tools](raster.md)