AR1/docs/analysis-tools/clustering.md

70 lines
1.3 KiB
Markdown

# Clustering
Group features based on spatial proximity using clustering algorithms.
## Overview
Clustering groups nearby features into clusters, identifying spatial patterns and groupings in point data.
## Inputs
- **Dataset**: Point dataset
- **Method**: Clustering algorithm
- **Parameters**: Algorithm-specific parameters
## Outputs
New dataset containing:
- Original features
- **Cluster ID**: Assigned cluster identifier
- **Cluster Size**: Number of features in cluster
- Original attributes
## Algorithms
### K-Means Clustering
Groups points into k clusters by minimizing within-cluster variance.
### DBSCAN
Density-based clustering that identifies clusters of varying shapes.
### Hierarchical Clustering
Builds cluster hierarchy using distance measures.
## Example
```json
{
"dataset_id": 123,
"method": "kmeans",
"k": 5
}
```
## Background Jobs
This analysis runs as a background job.
## Use Cases
- Market segmentation
- Service area identification
- Pattern recognition
- Data exploration
## Notes
- Algorithm selection depends on data characteristics
- Parameter tuning affects results
- Results may vary with different random seeds
- Consider spatial scale when interpreting clusters
## Related Documentation
- [Analysis API](../api/analysis.md)